

Ex-proof proportional valves with integral digital electronics

with or without integral position or pressure transducer - ATEX certification

1 EXPLOSION PROOF CERTIFICATION MAIN DATA

ATEX certification		Ex II 2G Ex d IIC	T6/T5/T4/T3		
VALVE TYPE		ENOID VALVES ut transducer)	SINGLE SOLENOID VALVES (with or without transducer) T6 T5 (option / ≤ 85 °C -20 ÷ +45 °C -20 ÷ +60 ° ctly coupled with the relevant cable gi ection -20 ÷ 0007-0:		
Temperature class (only for Group II)	Т4	T3 (option /7)	T6	T5 (option /7)	
Surface temperature	≤ 135 °C	≤ 200 °C	≤ 85 °C	≤100 °C	
Ambient temperature	-20 ÷ +40 °C	-20 ÷ +60 °C	-20 ÷ +45 °C	-20 ÷ +60 °C	
Protection degree	IP 66 According t			elevant cable gland	
Mechanical construction	Flame proof housing	classified Ex d, accord	ing to EN 60079-0: 200	06, EN 60079-1: 2007	
Cable entrance and electrical wiring		Internal terminal board 20x1.5 threaded conne		-	

Note: This technical table contains information about ex-proof certification data, model codes, dimensions and wiring of the ex-proof proportional valves with integral digital electronics For detailed information about:

-valve's functional characteristics and mounting surface dimensions

-digital drivers technical data and functional parameters setting

see the relevant technical tables of the standard proportional valves and digital drivers.

2 MAIN CHARACTERISTICS OF EX-PROOF PROPORTIONAL VALVES

Ex-proof ZA valves are proportional valves equipped with specific solenoids and integral digital electronics certified to ATEX 94/9/CE, protection mode:

• Ex II 2 G Ex d IIC T6/T5/T4/T3 (group II for surface plants with gas or vapours environment, category 2, zone 1 and 2)

The solenoid and the electronics housing are designed to contain the possible explosion which could be caused by the presence of the gas mixture inside the housing, thus avoiding dangerous propagation in the external environment. They are also designed to limit the external temperature according to the certified class to avoid the self ignition of the explosive mixture present in the environment.

The integral digital electronics in explosion proof construction provides consistent advantages respect to the separated analog drivers for ex-proof valves:

- compact execution
- simplified valve wiring
- · reduced risk of electromagnetic disturbances on the valve's transducer feedback signal
- possibility to exploit in hazardous envi-ronment all the advantages provided by the standard digital electronics: software setting of the main functional parameters as bias, ramps, scale, linearization of the hydraulic regulation characteristic
- · complete diagnostics of the driver status, and fault condition.

Following communication interfaces are available:

- PS, Serial communication interface for the software setting of the functional parameters. The valve is operated by analogue command signal.
- BC, CANopen interface
- BP, PROFIBUS DP interface

The valves with -BC and -BP interfaces can be integrated into a fieldbus communication network and thus digitally operated by the machine control unit.

The ex-proof digital integral electronics is available for the full range of proportional valves, as shown in the following pages.

Assembly position	Any position
Subplate surface finishing	Roughness index, $\sqrt{\frac{04}{2}}$ flatness ratio 0,01/100 (ISO 1101)
Ambient temperature	See section 1
Fluid	Hydraulic oil as per DIN 51524 535 for other fluids see model code sections
Recommended viscosity	15 ÷100 mm²/s at 40°C (ISO VG 15÷100)
Fluid contamination class	ISO 18/15 achieved with in line filters of 10 μ m and $\beta_{10} \ge 75$ (recommended)
Fluid temperature	-20°C +60°C (standard and /WG seals) -20°C +80°C (/PE seals)

3 CERTIFICATION

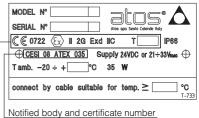
In the following are resumed the valves marking according to Atex 94/9/CE

 $\langle \xi_x \rangle$ = Equipment for explosive atmospheres

II = Group II for surfaces plants

= High protection (equipment category) 2

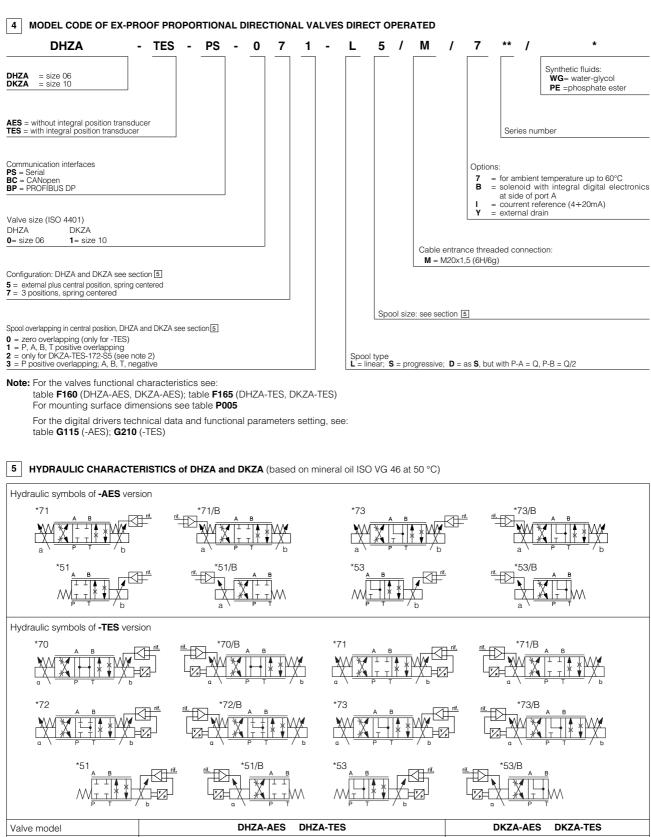
G = For gas and vapours **d** = Flame proof housing


IIC = Gas group

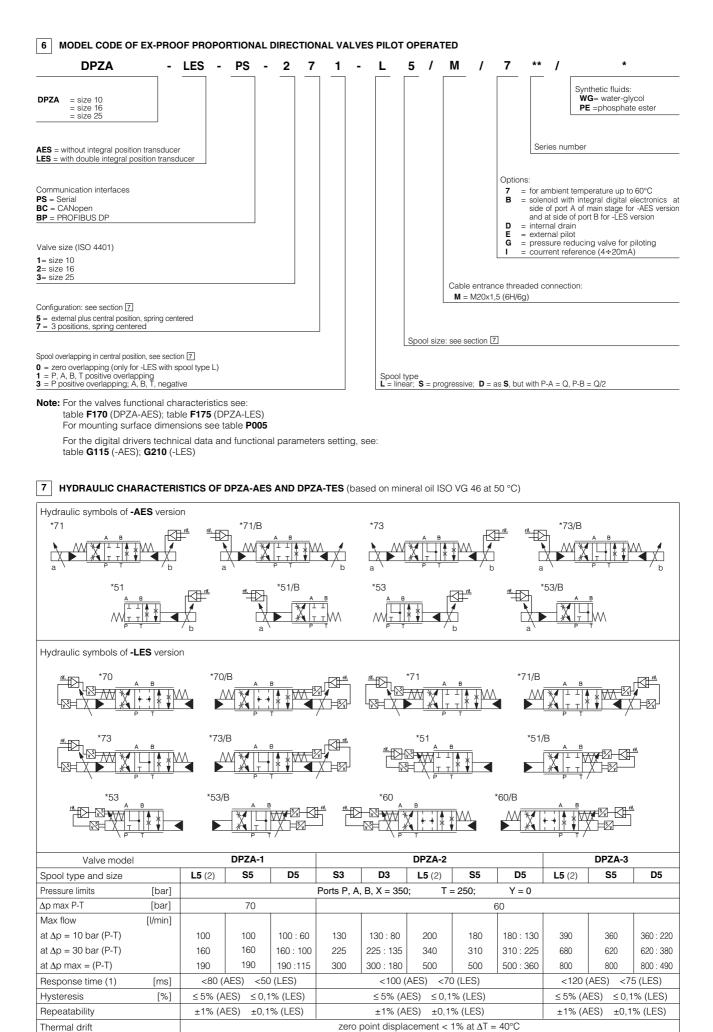
T6/T5/T4/T3 = Temperature class of solenoid surface referred to the max ambient temperature

Possibility of explosive atmosphere during normal functioning

= Low probability of explosive atmosphere Zone 2

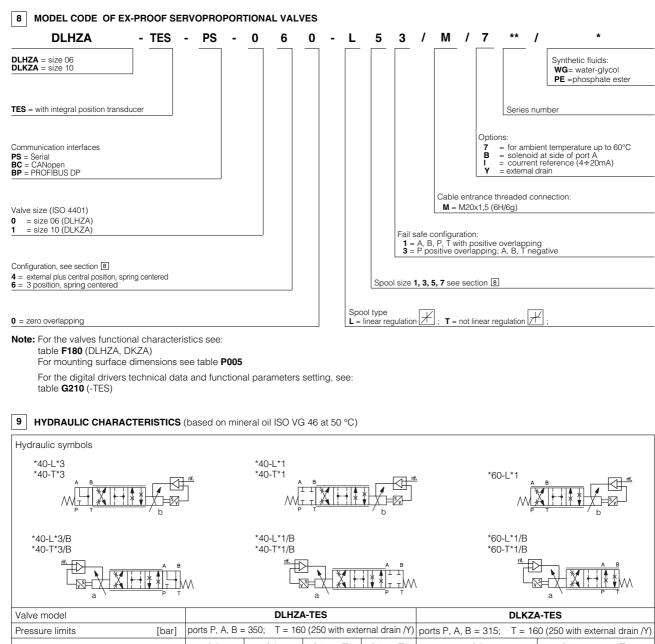

2.1 EXAMPLE OF NAMEPLATE MARKING

Marking according to Atex Directive


Zone 1

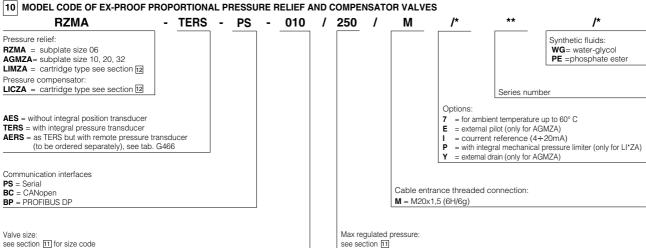
WARNING: service work provided on the valve by the end users or not qualified personnel invalidates the certification

Valve model			DIIZA ALO	DILLA ILO			DREA ALO DREA ILO				
Spool overlapping		1, 3	1, 3	1, 3	0	1, 3	1, 3	0	0 2 1,3		
Spool type and size		L14	L1	S3, L3, D3	L5	S5, L5, D5	S3, L3	L5 S5 S5, L5, D5			
Pressure limits	[bar]	ports P, A	, B = 350; T = 16	0 (250 with extern	al dr	ain /Y)	ports P, A, B = 315; T = 160	(250 with external drain /Y)			
∆p max P-T	[bar]	70	70	50		50	40	40			
Max flow at $\Delta p = 10$ bar (P-T) at $\Delta p = 30$ bar (P-T) at Δp max (P-T)	[l/min]	1 2 3	4,5 8 12	17 30 45		28 50 60	45 80 100			60 105 110	
Response time (1)	[ms]		< 30 (-AES)	< 15 (-TES)			< 40 (-AES)	< 2	20 (-T	ES)	
Hysteresis	[%]		≤5%(-AES)	≤0,2% (-TES)			≤5%(-AES)	≤0,2	2% (-	TES)	
Repeatability			± 1% (-AES) ± 0,1% (-TES) ± 1% (-AES) ± 0,1% (-TE					-TES)			
Thermal drift (only -TE	ES)			zero point disp	lace	ment < 1% at .	$\Delta T = 40^{\circ}C$				


(2) The configuration type 2 provides the same characteristic of type 1, but avoiding the pressurization of A and B ports with spool in rest position.

(1) Response times at step signal (0%→100%) are measured from 10% to 90% of step value and are strictly referred to the valve regulation

(2) For zero overlapping spool **0L5**, the valve offset position (with switch-off power supply) is 1 ÷ 6% P-B/A-T


F250

									· ·			
Spool		L1	L3	L5	T5	L7	T7	L3	L7	T7		
∆p max P-T	[bar]	70	70	7	0	7	0	60	60			
Max flow at $\Delta p = 30$ bar at Δp max bar	[l/min]	4,5 7	9 14	1	-	2 4	-	40 55	60 80			
Leakage [cm3/min] at P =	100 bar (1)	< 200	< 300	< 500	< 200	< 900	< 200	< 1000	< 1500	< 400		
Response time (2)	[ms]			10				≤	15			
Hysteresis	[%]	≤ 0,1% ≤ 0,1%										
Thermal drift				Z	zero po	int disp	lacem	ment < 1% at $\Delta T = 40^{\circ}C$				

(1) Referred to spool in center position and 50°C oil temperature.

(2) Response times at step signal (0% → 100%) are measured from 10% to 90% of step value and are strictly referred to valve regulation.

see section 11 for size code

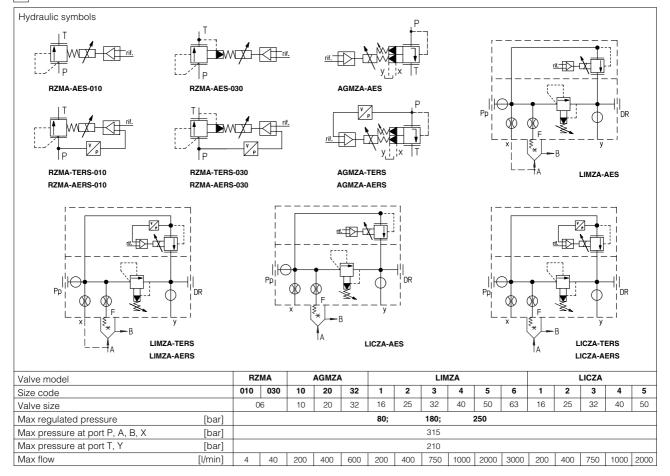
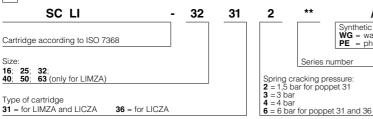

Note: For the valves functional characteristics see:

table F007 (RZMA-*-010); table F065 (RZMA-*-030); table F175 (AGMZA); table F300 (LIMZA, LICZA) For mounting surface dimensions see table **P005**

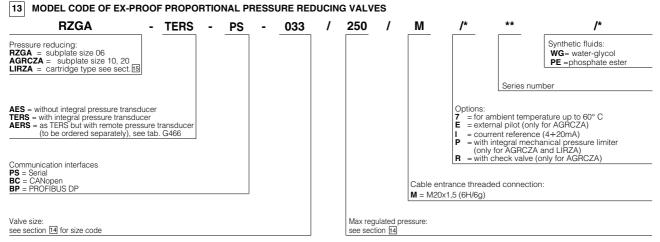
For the digital drivers technical data and functional parameters setting, see:

table G115 (-AES); table G205 (-AERS, TERS)


11 HYDRAULIC CHARACTERISTICS

/*

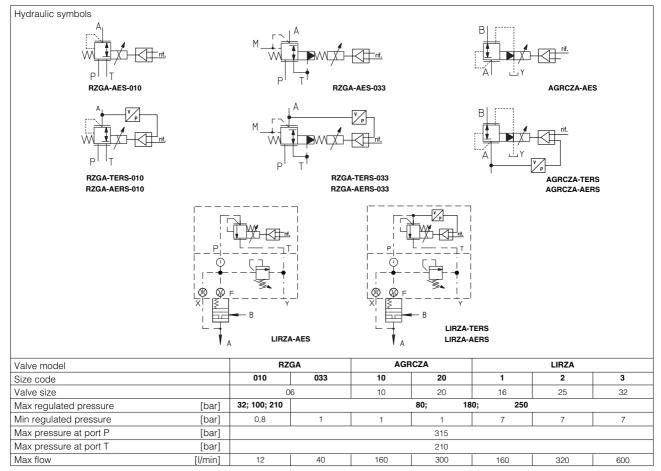
Synthetic fluids WG = water-glycol PE = phospate ester

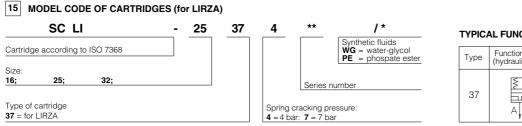


Note: For mounting surface dimensions see table P006

TYPICAL FUNCTIONS OF CARTRIDGES

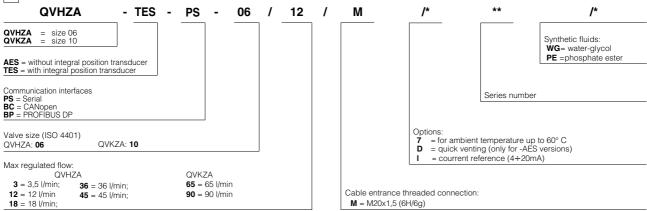
It is the ratio of the area A to the area on which the pilot pressure is applied.


Note: For the valves functional characteristics see:


table F015 (RZGA-*-010); table F070 (RZGA-*-033); table F050 (AGRCZA); table F300 (LIRZA) For mounting surface dimensions see table P005

For the digital drivers technical data and functional parameters setting, see:

table **G115** (-AES); table **G205** (-AERS, TERS)



TYPICAL FUNCTIONS OF CARTRIDGES

37	Туре	Functional sketch (hydraulic symbol)	Typical section	Area ratio (1)
	37	B A		1:1

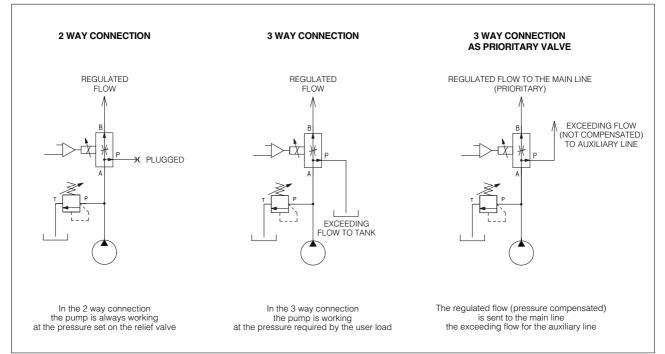
Note: For mounting surface dimensions see table P006

(1) It is the ratio of the area A to the area on which the pilot pressure is applied. 16 MODEL CODE OF EX-PROOF PRESSURE COMPENSATED PROPORTIONAL FLOW CONTROL VALVES

Note: For the valves functional characteristics see: table F410 (QVHZA-*, QVKZA-*)

For mounting surface dimensions see table **P005**

For the digital drivers technical data and functional parameters setting, see:


table G115 (-AES); table G210 (-TES)

17 HYDRAULIC CHARACTERISTICS (based on mineral oil ISO VG 46 at 50 °C)

Hydraulic symbols											Bı				
Note: In three-way connection po In two-way connection port Port T must always be plug	rt P is open. P must be plugged. ged.	Ē	f.		P	QVHZA QVKZA			<u>rif.</u>				QVHZA-T QVKZA-T		
Valve model			Q	VHZA-A	ES			Q	VHZA-TE	s		QVKZ	A-AES	QVKZ	A-TES
Valve size			06 10												
Max pressure ports P, A, B	[bar]							2	10						
Max regulated flow	[l/min]	3,5	12	18	36	45	3,5	12	18	35	45	65	90	65	90
Min regulated flow (1)	[cm³/min]	15	20	30	50	60	15	20	30	50	60	85	100	85	100
Regulating ∆p	[bar]	4 - 6		10 - 12		15	4 - 6		10 - 12		15	6 - 8	10 - 12	6 - 8	10 - 12
Max flow on port A	[l/min]	4	0	35	50	55	50			60	70	100	70	100	

(1) Values are referred to 3-way configuration. In the 2-way configuration, the values of min regulated flow are higher.

17.1 TYPICAL APPLICATIONS

18 ELECTRONICS WIRING

18.1 MAIN CONNECTIONS FOR ALL MODELS

PIN	CABLE ENTRANCE	DESCRIPTION	TECHNICAL SPECIFICATION						
1	3	ENABLE	Enabling input, normal working = 24 VDC						
2	3	LOGIC GND	Power supply (logic stage) Stabilized +24 VDC						
3	3	LOGIC +24V	Filtered and rectified: Vrms 21-33 (ripple max 2Vpp)						
4	3	FAULT	Alarm = 0 VDC Correct functioning = +24VD						
5	4	COIL S2	Coil connection only for double solenoid valves						
6	4	COIL S2							
7	3	INPUT -	Reference signal = 0 VDC						
8	3	MONITOR	±10 VDC 0 ÷ 10 VDC (1) (3)						
9	3	INPUT +	±10 VDC 0 ÷ 10 VDC (2) (3)						
10	3	POWER GND	Power supply (power stage) Stabilized +24 VDC						
11	3	POWER +24V	Filtered and rectified: Vrms 21-33 (ripple max 2Vpp)						
PE	3	GND	earth connection						

(1) referred to pin 2 (LOGIC GND)

(2) referred to pin 7 (INPUT -)

(3) current reference and monitor (4÷20mA) for option /I

18.2 PRESSURE TRANSDUCER CONNECTIONS FOR -TERS (factory wired), -AERS (to be wired) and -LES (factory wired)

PIN	CABLE ENTRANCE	VERSION	DESCRIPTION	TECHNICAL SPECIFICATION
12	4	-TERS -AERS	GND	power supply and sygnal = 0 VDC
12	4	-LES	GND	power supply and sygnal = 0 VDC
13	4	-TERS -AERS	TRANSD SUPPLY +	+24 VDC (4)
10	4	-LES	TRANSD SUPPLY +	+15 VDC
14	4	-TERS -AERS	N. C.	not connected
14	4	-LES	TRANSD SUPPLY -	-15 VDC
15	4	-TERS -AERS	TRANSD SIGNAL	pressure signal (4)
'5	-	-LES	TRANSD SIGNAL	position signal

(4) referred to pin 12 (GND)

N.B. For -AES version the pins 12-13-14-15 are not connected

18.3 COMMUNICATION INTERFACE CONNECTIONS FOR ALL MODELS

PIN	CABLE		DESCRIPTION								
FIN	ENTRANCE	-PS	-BC	-BP							
16	1/2	NC do not connect	NC do not connect	+5V BUS							
17	1/2	NC do not connect	SHIELD	SHIELD							
18	1/2	RS_TX	CAN_H	B_LINE							
19	1/2	RS_RX	CAN_L	A_LINE							
20	1/2	BUS GND	BUS GND	BUS GND							

18.4 CABLE ENTRANCE (see Fig.1)

(1) Cable entrance for -PS, -BC, -BP communication interfaces:

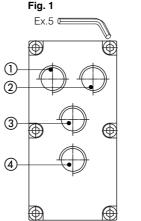
The Ex-proof integral digital electronics is provided with serial (-PS) or CANopen (-BC) or PROFIBUS DP (-BP) communication interface, depending to the selected model code

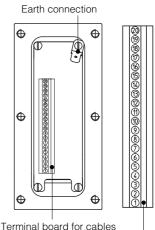
For -PS version the communication connector is used for the software setting of the functional parameters. It is installed in the cable entrance pos. (1) (factory plugged). For the electronics parameter setting, remove the threaded metal plug and connect the PC communication cable to the connector -see Fig.2

The above operation must be performed in a safety area.

After having completed the parameter setting, disconnect the communication cable and close the cable entrance with the proper threaded plug.

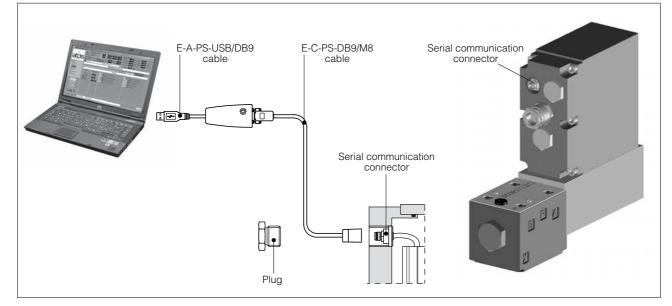
For -BC and -BP versions the valve is directly driven through the fieldbus interface, which connections are available on the terminal board internal to the electronics housing. Depending to the type of connection to the fieldbus network, one or two cable entrances can be used (see section 20 TAB.I) -"Via stub" connection, cable entrance () to be used -"Daisy chain" connection, cable entrance () and () to be used


- 2 Additional cable entrance for -BC, -BP communication interfaces
- 3 Cable entrances for power supply and main connections
- Gable entrances for remote pressure transducer connections (only for -AERS)


The cable entrance ④ is factory wired for:

-TERS (pressure transducer)

-LES (position transducer)


-AES and TES double solenoid version

connection

Fig. 2 PC connection to the valve's serial communication interface (version -PS)

19 SOFTWARE TOOLS

The driver configuration and parameters can be easily set with the Atos E-SW programming software.

The programming software is available in three different versions according to the driver's communication interfacing:

E-SW-PS (Serial), E-SW-BC (CANopen) and E-SW-BP (PROFIBUS DP).

A proper connection is required between the PC and the electronic driver communication port (-PS, -BC or -BP).

For a more detailed decription of software interface, PC requirements and adapter/cable/terminator characteristics please refer to technical table G500.

Programming software, must be ordered separately :

E-SW-* (mandatory - first supply) = Dvd including E-SW-* software installer, operator manuals, registration form for Atos digitals service **E-SW-*-N** (optional - next supplies) = as above but not including the registration form for Atos digitals service

USB Adapters, Cables and Terminators, can be ordered separately

E-A-PS-USB/DB9 and E-C-PS-DB9/M8 = USB adapter and cable for -PS drivers

E-A-PS-USB/DB9 adapter is required only if a RS232 serial port is not available on the PC

E-A-BC-USB/DB9, E-C-BC-DB9/RA and E-TRM-BC-DB9/DB9 =

I-BC-DB9/DB9= USB adapter, cable and terminator for -BC driversI-BP-DB9/DB9= USB adapter, cable and terminator for -BP drivers

E-A-BP-USB/DB9, E-C-BP-DB9/RA and **E-TRM-BP-DB9/DB9** = USB adapter, cable and terminator for -BP drivers E-TRM-BC-DB9/DB9 (CANopen) and E-TRM-BP-DB9/DB9 (PROFIBUS DP) fieldbus terminators are required when the adapter is directly connected to the digital driver or to one end of the fieldbus network.

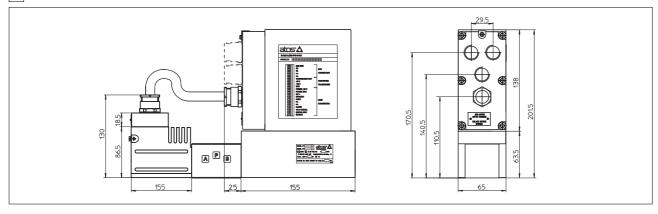
20 MODEL CODE OF CABLE GLANDS AND THREADED PLUGS

Atos can supply 2 different kind of cable glands, depending to the cable's diameter used by the costumer. The cable glands and the threaded plugs (to be ordered separately) are ATEX certified according to EN 60079-0 and EN 60079-1 сн. 24 CH. 27 сн. 27 Atos codes for cable glands and threaded plugs: SP-ZMX-S = brass cable gland, protection degree IP 66/67/68 threaded connection M20x1,5 (6H/6g). 120×1.5 ഗ 120x' Cable size 3 2 ÷ 8 7 mm SP-ZMX-L = brass cable gland, protection degree IP 66/67/68 threaded connection M20x1,5 (6H/6g). 15 Cable size 6,5 ÷ 14 mm SP-ZMX-S SP-ZMX-L P-ZMX-T =brass threaded plug, protection degree IP 66/68 cable Ø 3,2÷8,7 mm cable Ø 6,5÷14 mm threated connection M20x1,5 (6H/6g).

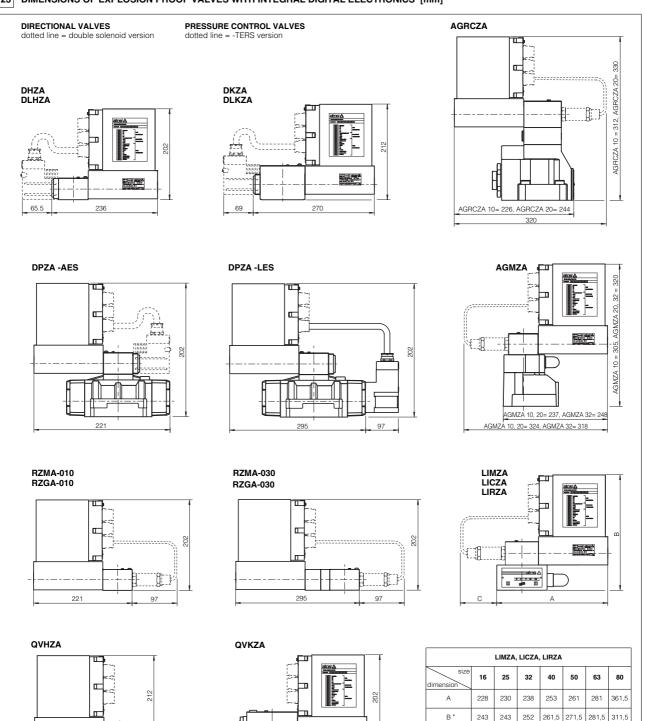
Depending to the model code, the valves are supplied with:

• Atex certified cable gland code SP-ZMX-S, for factory wired connections

- Atex certified threaded plugs code SP-ZMX-T, for connections not to be used
- for connections available for the costumers, the cable glands and the treaded metal plug have to be ordered separately. The quantity and the mounting position of the cable glands and threaded plugs is depending to the selected connection of the of communication interface, as shown in the following **TAB.1**


TAD. I						
Valve's communication	Cable	gland	Thread	ed plug	Scheme	Notes
interfaces	quantity	position	quantity	position	Conomo	1000
-PS	1	3	none	none		Cable entrance 1 and 2 are factory plugged Cable entrance 3 is open for costumers Cable entrance 4 is factory plugged or wired depending to the valve model
-BC, -BP "via stub" connection	2	1, 3	1	2		Cable entrance 2 are factory plugged Cable entrance 3 is open for costumers Cable entrance 4 is factory plugged or wired depending to the valve model
-BC, -BP "daisy chain" connection	3	1, 2, 3	none	none		Cable entrance 3 is open for costumers Cable entrance 4 is factory plugged or wired depending to the valve model

21 MASS


VALVE TYPE	MASS (Kg)	VALVE TYPE	MASS (Kg)	VALVE TYPE	MASS (Kg)						
DHZA-*-05	8,2	DPZA-*-27	18,7	AGMZA-*-10	12,2	LIMZA-*-5	19,2	RZGA-*-010	9	QVHZA	8,6
DHZA-*-07	9	DPZA-*-35	22	AGMZA-*-20	16	LIMZA-*-6	28	RZGA-*-030	9,6	QVKZA	9,5
DKZA-*-05	9	DPZA-*-37	23	AGMZA-*-32	18,5	LICZA-*-1	13,6	AGRCZA-*-10	13,6		
DKZA-*-07	9,6	DLHZA	8,5	LIMZA-*-1	10,3	LICZA-*-2	14,6	AGRCZA-*-20	14,6		
DPZA-*-15	13,6	DLKZA	10,2	LIMZA-*-2	10,8	LICZA-*-3	17,7	LIRZA-*-1	17,7		
DPZA-*-17	14,6	RZMA-*-010	9	LIMZA-*-3	12	LICZA-*-4	8,2	LIRZA-*-2	8,2		
DPZA-*-25	17,7	RZMA-*-030	9,3	LIMZA-*-4	15,7	LICZA-*-5	9	LIRZA-*-3	9		

TAB. I

22 DIMENSIONS OF EXPLOSION PROOF SOLENOIDS WITH INTEGRAL DIGITAL ELECTRONICS [mm]

23 DIMENSIONS OF EXPLOSION PROOF VALVES WITH INTEGRAL DIGITAL ELECTRONICS [mm]

270

С

90 88 80 68 60 37

* for option /H add 40mm to the dimension

10/08

236